Build a Simple LLM Application
In this quickstart we’ll show you how to build a simple LLM application. This application will translate text from English into another language. This is a relatively simple LLM application - it’s just a single LLM call plus some prompting. Still, this is a great way to get started with LangChain - a lot of features can be built with just some prompting and an LLM call!
Concepts
Concepts we will cover are:
Using language models
Using PromptTemplates and OutputParsers
Chaining a PromptTemplate + LLM + OutputParser using LangChain
Debugging and tracing your application using LangSmith
That’s a fair amount to cover! Let’s dive in.
Setup
Installation
To install LangChain run:
- npm
- yarn
- pnpm
npm i langchain
yarn add langchain
pnpm add langchain
For more details, see our Installation guide.
LangSmith
Many of the applications you build with LangChain will contain multiple steps with multiple invocations of LLM calls. As these applications get more and more complex, it becomes crucial to be able to inspect what exactly is going on inside your chain or agent. The best way to do this is with LangSmith.
After you sign up at the link above, make sure to set your environment variables to start logging traces:
export LANGCHAIN_TRACING_V2="true"
export LANGCHAIN_API_KEY="..."
Detailed walkthrough
In this guide we will build an application to translate user input from one language to another.
Using Language Models
First up, let’s learn how to use a language model by itself. LangChain supports many different language models that you can use interchangably - select the one you want to use below!
Pick your chat model:
- OpenAI
- Anthropic
- FireworksAI
- MistralAI
- Groq
- VertexAI
Install dependencies
- npm
- yarn
- pnpm
npm i @langchain/openai
yarn add @langchain/openai
pnpm add @langchain/openai
Add environment variables
OPENAI_API_KEY=your-api-key
Instantiate the model
import { ChatOpenAI } from "@langchain/openai";
const model = new ChatOpenAI(model: "gpt-4");
Install dependencies
- npm
- yarn
- pnpm
npm i @langchain/anthropic
yarn add @langchain/anthropic
pnpm add @langchain/anthropic
Add environment variables
ANTHROPIC_API_KEY=your-api-key
Instantiate the model
import { ChatAnthropic } from "@langchain/anthropic";
const model = new ChatAnthropic({
model: "claude-3-sonnet-20240229",
temperature: 0
});
Install dependencies
- npm
- yarn
- pnpm
npm i @langchain/community
yarn add @langchain/community
pnpm add @langchain/community
Add environment variables
FIREWORKS_API_KEY=your-api-key
Instantiate the model
import { ChatFireworks } from "@langchain/community/chat_models/fireworks";
const model = new ChatFireworks({
model: "accounts/fireworks/models/firefunction-v1",
temperature: 0
});
Install dependencies
- npm
- yarn
- pnpm
npm i @langchain/mistralai
yarn add @langchain/mistralai
pnpm add @langchain/mistralai
Add environment variables
MISTRAL_API_KEY=your-api-key
Instantiate the model
import { ChatMistralAI } from "@langchain/mistralai";
const model = new ChatMistralAI({
model: "mistral-large-latest",
temperature: 0
});
Install dependencies
- npm
- yarn
- pnpm
npm i @langchain/groq
yarn add @langchain/groq
pnpm add @langchain/groq
Add environment variables
GROQ_API_KEY=your-api-key
Instantiate the model
import { ChatGroq } from "@langchain/groq";
const model = new ChatGroq({
model: "mixtral-8x7b-32768",
temperature: 0
});
Install dependencies
- npm
- yarn
- pnpm
npm i @langchain/google-vertexai
yarn add @langchain/google-vertexai
pnpm add @langchain/google-vertexai
Add environment variables
GOOGLE_APPLICATION_CREDENTIALS=credentials.json
Instantiate the model
import { ChatVertexAI } from "@langchain/google-vertexai";
const model = new ChatVertexAI({
model: "gemini-1.5-pro",
temperature: 0
});
Let’s first use the model directly. ChatModel
s are instances of
LangChain “Runnables”, which means they expose a standard interface for
interacting with them. To just simply call the model, we can pass in a
list of messages to the .invoke
method.
import { HumanMessage, SystemMessage } from "@langchain/core/messages";
const messages = [
new SystemMessage("Translate the following from English into Italian"),
new HumanMessage("hi!"),
];
await model.invoke(messages);
AIMessage {
lc_serializable: true,
lc_kwargs: {
content: "ciao!",
tool_calls: [],
invalid_tool_calls: [],
additional_kwargs: { function_call: undefined, tool_calls: undefined },
response_metadata: {}
},
lc_namespace: [ "langchain_core", "messages" ],
content: "ciao!",
name: undefined,
additional_kwargs: { function_call: undefined, tool_calls: undefined },
response_metadata: {
tokenUsage: { completionTokens: 3, promptTokens: 20, totalTokens: 23 },
finish_reason: "stop"
},
tool_calls: [],
invalid_tool_calls: []
}
If we’ve enable LangSmith, we can see that this run is logged to LangSmith, and can see the LangSmith trace
OutputParsers
Notice that the response from the model is an AIMessage
. This contains
a string response along with other metadata about the response.
Oftentimes we may just want to work with the string response. We can
parse out just this response by using a simple output parser.
We first import the simple output parser.
import { StringOutputParser } from "@langchain/core/output_parsers";
const parser = new StringOutputParser();
One way to use it is to use it by itself. For example, we could save the result of the language model call and then pass it to the parser.
const result = await model.invoke(messages);
await parser.invoke(result);
"ciao!"
More commonly, we can “chain” the model with this output parser. This means this output parser will get called every time in this chain. This chain takes on the input type of the language model (string or list of message) and returns the output type of the output parser (string).
We can easily create the chain using the .pipe
method. The .pipe
method is used in LangChain to combine two elements together.
const chain = model.pipe(parser);
await chain.invoke(messages);
"Ciao!"
If we now look at LangSmith, we can see that the chain has two steps: first the language model is called, then the result of that is passed to the output parser. We can see the LangSmith trace
Prompt Templates
Right now we are passing a list of messages directly into the language model. Where does this list of messages come from? Usually it constructed from a combination of user input and application logic. This application logic usually takes the raw user input and transforms it into a list of messages ready to pass to the language model. Common transformations include adding a system message or formatting a template with the user input.
PromptTemplates are a concept in LangChain designed to assist with this transformation. They take in raw user input and return data (a prompt) that is ready to pass into a language model.
Let’s create a PromptTemplate here. It will take in two user variables:
language
: The language to translate text intotext
: The text to translate
import { ChatPromptTemplate } from "@langchain/core/prompts";
First, let’s create a string that we will format to be the system message:
const systemTemplate = "Translate the following into {language}:";
Next, we can create the PromptTemplate. This will be a combination of
the systemTemplate
as well as a simpler template for where the put the
text
const promptTemplate = ChatPromptTemplate.fromMessages([
["system", systemTemplate],
["user", "{text}"],
]);
The input to this prompt template is a dictionary. We can play around with this prompt template by itself to see what it does by itself
const result = await promptTemplate.invoke({ language: "italian", text: "hi" });
result;
ChatPromptValue {
lc_serializable: true,
lc_kwargs: {
messages: [
SystemMessage {
lc_serializable: true,
lc_kwargs: {
content: "Translate the following into italian:",
additional_kwargs: {},
response_metadata: {}
},
lc_namespace: [ "langchain_core", "messages" ],
content: "Translate the following into italian:",
name: undefined,
additional_kwargs: {},
response_metadata: {}
},
HumanMessage {
lc_serializable: true,
lc_kwargs: { content: "hi", additional_kwargs: {}, response_metadata: {} },
lc_namespace: [ "langchain_core", "messages" ],
content: "hi",
name: undefined,
additional_kwargs: {},
response_metadata: {}
}
]
},
lc_namespace: [ "langchain_core", "prompt_values" ],
messages: [
SystemMessage {
lc_serializable: true,
lc_kwargs: {
content: "Translate the following into italian:",
additional_kwargs: {},
response_metadata: {}
},
lc_namespace: [ "langchain_core", "messages" ],
content: "Translate the following into italian:",
name: undefined,
additional_kwargs: {},
response_metadata: {}
},
HumanMessage {
lc_serializable: true,
lc_kwargs: { content: "hi", additional_kwargs: {}, response_metadata: {} },
lc_namespace: [ "langchain_core", "messages" ],
content: "hi",
name: undefined,
additional_kwargs: {},
response_metadata: {}
}
]
}
We can see that it returns a ChatPromptValue
that consists of two
messages. If we want to access the messages directly we do:
result.toChatMessages();
[
SystemMessage {
lc_serializable: true,
lc_kwargs: {
content: "Translate the following into italian:",
additional_kwargs: {},
response_metadata: {}
},
lc_namespace: [ "langchain_core", "messages" ],
content: "Translate the following into italian:",
name: undefined,
additional_kwargs: {},
response_metadata: {}
},
HumanMessage {
lc_serializable: true,
lc_kwargs: { content: "hi", additional_kwargs: {}, response_metadata: {} },
lc_namespace: [ "langchain_core", "messages" ],
content: "hi",
name: undefined,
additional_kwargs: {},
response_metadata: {}
}
]
We can now combine this with the model and the output parser from above. This will chain all three components together.
const chain = promptTemplate.pipe(model).pipe(parser);
await chain.invoke({ language: "italian", text: "hi" });
"ciao"
If we take a look at the LangSmith trace, we can see all three components show up in the LangSmith trace
Conclusion
That’s it! In this tutorial we’ve walked through creating our first simple LLM application. We’ve learned how to work with language models, how to parse their outputs, how to create a prompt template, and how to get great observability into chains you create with LangSmith.
This just scratches the surface of what you will want to learn to become a proficient AI Engineer. Luckily - we’ve got a lot of other resources!
For more in-depth tutorials, check out out Tutorials section.
If you have specific questions on how to accomplish particular tasks, see our How-To Guides section.
For reading up on the core concepts of LangChain, we’ve got detailed Conceptual Guides